
Advanced Mathematical Models & Applications

Vol.4, No.2, 2019, pp.150-159

THE PROBLEM OF RECOVERING THE ANOMALY
DENSITY FROM THE MEASUREMENT OF THE
GRAVITATIONAL POTENTIAL

S. Serovajsky∗1, D. Nurseitov2, A.Nurseitova1, A.Azimov2

1Al-Farabi Kazakh National University, Almaty, Kazakhstan
2Satbayev University, Almaty, Kazakhstan

Abstract. In this paper, we consider the inverse gravimetry problem of recovering the anomaly density from the

measurement of the gravitational potential. The problem is transformed to minimizing the discrepancy functional.

The gradient method is used here. Numerical results for model parameters are given. The exactness estimate of

solving the problem is analyzed in the general case. The problems of determination of the horizontal and vertical

distribution of the density of the anomaly are considered too. Besides, the exactness estimate of the horizontal

and vertical dimensions of the anomaly, its depth and density in the homogeneous case, was analyzed.
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1 Introduction

One of the most important ways of intelligence and analysis of mineral deposits associated
with the detection and identification of gravitational anomaly (Jacoby & Smilde, 2009). Thus
on the basis of gravimetric methods identifies various deviations of the gravitational potential,
to indicate the presence of any heterogeneities in the considered crustal thickness. Interpre-
tation of the obtained results implies the solution of any inverse problems of gravimetry (see,
for example Balk et al. (2015); Balk & Yeske (2013); Vasin et al. (2013); Akimova et al. (2014);
Prutkin & Saleh (2014); Strakhov & Lapina (1976); Mikhailov (1976)). As is known, inverse
problems of gravimetry are essentially incorrect. They not only lack the stability of the result-
ing solution to the input data, but often there is no uniqueness of the solution of the problem.
One of the known optimization methods for their solution is assembling suggested by Lions
(1969), recently from the statistical form this method has been modified to a mixed one with
a deterministic approach (Balk & Yeske, 2013). In this paper, a gradient-type method is used
to solve the problem under consideration, which is regularizing, i.e. conditionally stable. Many
studies of methods of the Newton type for the solution of the restoration of the medium boundary
in inverse problems of gravimetry were carried out in (Akimova et al., 2014; Prutkin & Saleh,
2014; Strakhov & Lapina, 1976). The purpose of this paper is to find out exactly what infor-
mation and with what degree of accuracy can be restored by measuring the potential of the
gravitational and its gradient on the surface of the earth.

In this paper, we consider the Poisson equation for the potential of the gravitational field in
a certain region. The inverse problem is to determine the density of the medium on the basis
of measuring the gravitational potential and its derivative on the surface of the earth. In this
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case, the remaining part of the boundary of the region under consideration is given the potential
value, which would be observed in the same region in the absence of a gravitational anomaly.

2 Mathematical model

We consider a part of the earth’s surface, characterized by a certain region S with boundary Γ
in the horizontal plane with the coordinates x and y. A function characterizing the height of a
point with the coordinates x and y. In this case, as the origin of the vertical coordinate z, we
select the maximum value of the function h in the region S, wherein the coordinate itself directed
downward. We consider a layer of the earth’s crust in a region with a depth of occurrence not
exceeding a sufficiently large value of H. Thus, a volume is examined

V = {(x, y, z) : h(x, y) ≤ z ≤ H, (x, y) ∈ S} .

The distribution of the gravitational potential φ = φ(x, y, z) in a given volume is described
by the Poisson equation

∆φ(x, y, z) = −4πGρ(x, y, z), (x, y, z) ∈ V, (1)

where ρ is the density, and G is the gravitational constant.
The inverse problem of gravimetry consists in determining the density ρ from the results of

measuring the potential of the gravitational field or some of its characteristics on the surface
of the earth. Indeed, if in the volume under consideration there is some gravitational anomaly,
then its density differs from the density of its surrounding medium. Thus, if a deviation in the
density is found somewhere in the process of solving the problem, then at the location of this
deviation one can judge the presence of an anomaly there, and in terms of the magnitude of the
deviation, its composition.

The fundamental complexity of this problem is related to the lack of information about the
state of the gravitational field at the boundary of a given volume, excluding its outer surface,
described by the function h. To overcome the difficulty that has arisen, we use the perturbation
method, the use of which is justified in the case when the dimensions of the anomaly are
sufficiently small in comparison with the dimensions of the region under consideration. For
the practical realization of this hypothesis, the region S and the depth H are chosen to be
sufficiently large, the larger the larger the expected sizes of the anomaly being investigated.
Moreover, since the domain S is chosen artificially, without loss of generality of the investigation
it can be considered quite simple, for example, a circle or a rectangle.

In the case of smallness of the anomaly, the perturbation of the gravitational field produced
by it is sufficiently small and, consequently, has practically no effect on a sufficiently large
distance from it. Under these conditions, we can assume that the values of the perturbed and
unperturbed potentials of the gravitational field coincide on the lateral surface of the cylinder

Σ = {(x, y, z) : h(x, y) ≤ z ≤ H, (x, y) ∈ Γ}

and on the lower boundary of the region under consideration, i.e. at z = H.
The investigation begins with the determination of the potential of the unperturbed gravita-

tional field corresponding to the case of the absence of a gravitational anomaly in the considered
region. We consider the equation

∆φ0(x, y, z) = −4πGρ0(x, y, z), (x, y, z) ∈ V, (2)

similar (1). The density distribution ρ0 = ρ0(x, y, z) is assumed to be known. Then the difference
between the perturbed and undisturbed potentials

ψ(x, y, z) = φ(x, y, z)− φ0(x, y, z)
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will satisfy the Poisson’s equation

∆ψ(x, y, z) = −4πGη(x, y, z), (x, y, z) ∈ V, (3)

where

η(x, y, z) = ρ(x, y, z)− ρ0(x, y, z).

We assumed that the lateral and lower boundaries of the region under consideration are so
far removed from the anomaly that the effect of the anomaly on the value of the gravitational
potential is practically absent there, and therefore the perturbed and unperturbed potentials
coincide. Thus for equation (3) we obtain homogeneous boundary conditions

ψ(x, y, z) = 0, (x, y, z) ∈ Σ, (4)

ψ(x, y,H) = 0, (x, y) ∈ S. (5)

On the outer (upper) boundary of the volume under consideration, it is possible to measure
both the gravitational potential itself and its derivative. At the same time, naturally, in the
presence and absence of an anomaly, different results will be obtained. We formally set the
following conditions:

ψ|z=h(x,y) (x, y, z) = a(x, y), (x, y) ∈ S, (6)

∂ψ

∂z

∣∣∣∣
z=h(x,y)

= b(x, y), (x, y) ∈ S, (7)

where the functions a and b are the differences between the values of the perturbed and undis-
turbed potential and its derivative at the outer boundary.

The question arises, how can these values be determined in practice, if the experiment
gives those values of the potential and its derivatives, which are actually realized? It is known,
however, that as the boundary of G approaches the boundary, the effect of the anomaly gradually
vanishes, and hence the functions a and b tend to zero. Thus, having experimental data over a
large area, it is possible to identify some ”unusual” values of the gravitational characteristics,
which indicate the presence of an anomaly. And when assigning the functions a and b under
the conditions (6), (7), one should take into account their deviations from the corresponding
”ordinary” values.

Thus, the inverse problem consists in finding a function η such that the corresponding solu-
tion of equation (3) satisfies the boundary conditions (4) – (7).

3 An optimization method of the solving the inverse problem

In the domain
V =

{
(x, y, z) ∈ R3| h(x, y) < z < H, (x, y) ∈ S

}
,

we consider the following inverse problem: it is required to determine a function η ∈ L2(V ) from
the equations:

∆ψ = −4πGη, (x, y, z) ∈ V, (8)

ψz|z=h(x,y) = a(x, y), (x, y) ∈ S, (9)

ψ|Σ = 0, (10)

ψ|z=H = 0, (x, y) ∈ S (11)

with the given function a ∈ L2(S) and the additional information

ψ|z=h(x,y) = b(x, y), (x, y) ∈ S. (12)
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Here
S =

{
(x, y) ∈ R2

∣∣ x ∈ (0, Lx), y ∈ (0, Ly)
}
,

Lx > 0, Ly > 0, h is a function that describes the measurement surface, H > 0.
It is convenient to investigate the inverse problem (8)–(12) in an operator form. For this

we define the corresponding direct problem as follows: it is required to determine a function
ψ ∈ L2(V ) from equations (8)–(11) with given functions η ∈ L2(V ) and a ∈ L2(S).

We note that the solution to the direct problem (8)–(11) is searched for in the space L2(V ),
and is understood in the generalized sense as follows:

Definition 1. A function ψ ∈ L2(V ) is called a generalized solution of the direct problem
(8)–(11) if for all w ∈ H2(V ) such as

∂w

∂n

∣∣∣
Sh

= 0,

w|Σ = 0,

w|z=H = 0, (x, y) ∈ S,

the following identity is true∫
V
ψ∆w +

∫
V
4πGηw =

∫
S
w(x, y, h(x, y)) · a(x, y)dxdy. (13)

Here
Sh =

{
(x, y, z) ∈ R3

∣∣ (x, y) ∈ S, z = h(x, y)
}
,

Σ =
{
(x, y, z) ∈ R3

∣∣ (x, y) ∈ S, h(x, y) ≤ z ≤ H
}
.

Now we define the operator A : L2(V ) → L2(S) of the direct problem (8)–(11) such as :

Aη(x, y, z) = ψ(x, y, h(x, y)),

where ψ is a generalized solution to the direct problem (8)–(11) with a given η. That is provided
by the following two theorems (Mikhailov, 1976):

Theorem 1. (on the well-posedness of the direct problem) Let a ∈ L2(S), η ∈ L2(V ), then
there exists an unique generalized solution ψ ∈ L2(V ) to the direct problem (8)–(11); and the
following estimate is hold:

∥ψ∥L2(V ) ≤ 4πG(H + hmin)
2∥η∥L2(V ) + (H + hmin)

3
2 ∥a∥L2(S),

where
hmin = min

(x,y)∈S
|h(x, y)|.

Theorem 2. (on the existence of the trace) Let for a ∈ L2(S), η ∈ L2(V ) the function ψ ∈
L2(V ) is a generalized solution to the direct problem (8)–(11). Then there exists the trace
ψ(x, y, h(x, y)), and the estimate is hold:∥∥ψ(x, y, h(x, y))∥∥

L2(S)
≤ 4πG(H + hmin)

1
2 ∥η∥L2(V ) + (H + hmin)∥a∥L2(S).

Thus the inverse problem (8)–(12) can be written in the operator form:

Aη = b. (14)

It is solved by minimization of the following functional:

J(η) = ∥Aη − b∥2L2(S)
. (15)
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Theorem 3. (on an existence of a solution to the minimization problem (Lions, 1969)) Let Q be
a convex closed bounded domain in L2(V ). Then the problem of minimization of the functional
J(η), defined by (15), has a solution in Q.

The minimization problem is solved by the following gradient method:

ηn+1 = ηn − αJ ′ηn(Aηn − b). (16)

Here α is method’s parameter, n is a number of iteration; J ′ is a gradient of the functional (15),
and J ′ is calculated in the following way:

J ′ηn = 2A∗(Aηn − b). (17)

Here A∗ is the conjugate operator to A and

A∗ : L2(S) → L2(V ),

A∗ : d(x, y) 7→ −4πGν(x, y, z), (18)

where ν is a solution to the following conjugate problem:

∆ν = 0, (x, y, z) ∈ V, (19)

∂ν

∂n
|Sh

= d(x, y), (x, y) ∈ S, (20)

ν|Σ = 0, (21)

ν|z=H = 0, (x, y) ∈ S. (22)

We note, as above, that the solution to the conjugate problem (19)–(22) is searched for in the
space L2(V ), and is understood in the generalized sense as follows:

Definition 2. A function ν ∈ L2(V ) is called a generalized solution to the conjugate
problem (19)–(22) if for ∀w ∈ H2(V ) such as

∂w

∂n
|Sh

= 0,

w|Σ = 0,

w|z=H = 0, (x, y) ∈ S,

the following identity is true∫
V
ν∆w =

∫ Lx

0

∫ Ly

0
w(x, y, h(x, y)) · d(x, y)dxdy. (23)

A fulfilment of the conditions (18) is provided by the following theorem (Mikhailov, 1976).

Theorem 4. (on well-posedness of the conjugate problem Let d ∈ L2(S), then there exists an
unique generalized solution ν ∈ L2(V ) to the conjugate problem (19)–(22); and the following
estimate is hold:

∥ν∥L2(V ) ≤ (H + hmin)
3
2 ∥a∥L2(S).

Thus, the algorithm of the gradient method (16) for minimizing the functional (15) is as
follows: We have the given functions a, b, and define some ϵ > 0.

1. We define an arbitrary function η0 on V ; and let ηn be already computed.

2. We solve the direct problem (8)–(11) with ηn and the given a, and calculate the discrepancy
Aηn − b.
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3. We solve the conjugate problem (19)–(22) with dn = Aηn − b, and calculate the gradient
J ′ηn by formula (17).

4. We calculate the next iteration by the formula (16).

5. We verify the stop condition ∥Aηn+1 − b∥ ≤ ϵ. If it does not hold, then we return to step
2, else we set ηapp = ηn+1.

The boundary problems (8)-(11) and (12)-(14) here are solved by the finite difference method
(Iserles, 2008). The analogical algorithms are considered in Serovajsky (2008), Serovajsky
& Shakenov (2017); Serovajsky et al. (2018) for other problems.

4 Numerical results

In a numeral experiment we are limited to consideration of two-dimensional case with the hori-
zontal coordinate of x, changing on a segment [−L,L], and by the vertical coordinate of z from
an interval [0,H]. For simplicity an anomaly we consider rectangular, characterized by coordi-
nates |x − l0| < l, h1 ≤ z ≤ h2. As an exact meaning of the sought after function η we choose
some permanent value η0 into the indicated area and a zero value out of her. Known function
of b included in a boundary condition (12), we determine on a formula

b(x) =


b0, |x− l0| ≤ l1,

b0 cos
(
π(|x−l0|−l1)

2(l−l1)

)
l1 < |x− l0| ≤ l,

0, |x− l0| > l.

Thus, it is considered that, as far as distance from the anomaly, its influence on the gravitational
potential gradually decreases to zero. Solving the Dirichlet problem for the Poisson equation
(8), (10) – (12) with known values of η and b, we find the function a entering the boundary
condition (9).

All conducted calculations were executed in accordance with the algorithm given above up
to the receipt of small enough value of the minimized functional. In all variants of the account,
a monotonic decrease in the functional practically to zero was observed, which indicates a high
efficiency of the gradient method for minimizing functionals for the problem being solved. The
account variants considered below differ only in the presence of some additional information on
the anomaly. In order to assess the accuracy of the solution of the problem, the relative errors
in determining the following quantitative characteristics of the anomaly are used:

1. The horizontal dimensions of the anomaly – relation of the module of difference between
exact and calculation the values of length of anomaly to the size of all area on a horizontal.
Thus under calculation length of anomaly length of area in that potential differs from its
maximum value by at least 70%.

2. Horizontal position of anomaly – the ratio of the modulus of the difference between the
exact and approximate values of the horizontal center of the anomaly to the length of the
entire area horizontally. In this case, the calculated value of the horizontal center of the
anomaly is the midpoint of the segment corresponding to the horizontal dimensions of the
anomaly.

3. Vertical dimensions of the anomaly – the ratio of the modulus of the difference between
the exact and calculated values of the vertical dimensions of the anomaly to the size of
the entire region along the vertical. In this case, the calculated vertical dimensions of the
anomaly are the dimensions of the area along the vertical, in which the potential differs
from its maximum value by at least an order of magnitude.
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4. Vertical position of anomaly – ratio of the modulus of the difference between the exact
and approximate values of the vertical center of the anomaly to the length of the entire
area horizontally. In this case, the calculated value of the vertical center of the anomaly
is the middle of the segment corresponding to the vertical dimensions of the anomaly.

5. Weight of anomaly – the ratio of the modulus between the exact and approximate values
of the weight of the anomaly (the integral of the density function) to the exact value of
the weight of the anomaly.

The main quantitative score results for the various options are given in the table below. In
this case, the symbol ”-”, means that in the corresponding variant of the account this charac-
teristic is considered known.

Table 1: Relative errors in determining the characteristics of the anomaly.

variants
characteristics

1 2 3 4 5 6

horizontal position 0.02 0.03 − − − −
horizontal dimensions 0.05 0.12 − − − −

vertical position 0.32 − 0.09 0.29 0.02 −
vertical dimensions 0.04 − 0.21 − − −

weight 0.15 0.05 0.38 0.11 − 0.01

Let’s pass to consideration of separate variants of the account.

Variant 1. The main variant. The problem was solved in its natural formulation. The
reconstituted densities are given in the Figure 1. Decreasing of the minimized functional by
iterations is given in the Figure 2.

Figure 1: Calculation function η = η(x, z)

An analysis of the main quantitative indicators here shows that the horizontal position of
the anomaly is restored relatively accurately. In this case, a series of additional experiments
was carried out, when we moved the anomaly along the available region. In all these cases, a
similar picture was observed. However, the dimensions of the anomaly and its mass are restored
somewhat worse. And the vertical position is generally difficult to restore. In particular, in
calculations the anomaly always moves closer to the earth’s surface (see the figure). We note
that in this case the value of the minimized functional on the account completion is practically
no different from zero, which indicates that the algorithm for solving the optimization problem
itself is quite effective.

The obtained results can be explained by a significant imbalance between the volumes of
recoverable and additionally measured information. Indeed, from the additional data on the
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Figure 2: Decreasing of the minimized functional by iterations

boundary corresponding to condition (12) and representing a function of one variable, we try
to restore the free term of the Poisson equation, which is a function of two variables. Under
these conditions, both the posed inverse problem and the directly solvable optimization problem
associated with it have essentially not unique solutions. Naturally, the algorithm does not
distinguish such solutions and produces one of such solutions, which for a number of indicators
differs significantly from the sought value. To increase the accuracy of the solution of the
problem, it is required either to increase the volume of the measured information, or to reduce
the amount of information to be restored.

Variant 2. The horizontal distribution of the anomaly density is unknown. It is assumed
that the desired function η is determined by the formula

η = η(x, z) = f(x)g(z),

where the function g is assumed to be known (it is assumed to be equal to one in the region where
the anomaly is located and zero outside it), and the unknown is the function f , characterizing
the density distribution of the anomaly along the horizontal coordinate. The calculations are
carried out in accordance with the previously described gradient method. The derivative of the
functional is determined by the formula

I ′(f) = −8πG

H∫
0

ν(x, z) dz,

where ν is the solution of the conjugate system. The peculiarity of this variant is the circum-
stance that the required function f and the function b additionally specified depend on the same
horizontal coordinate. Comparing the results of the scores with the preceding ones, we note
that, despite the greatly reduced volume of recoverable information, the horizontal position of
the anomaly is determined approximately with the same degree of accuracy, and its dimensions
are even more inaccurate than in the version 1. However, the error in determining the weight
of the anomaly is three times smaller than before. The obtained results indicate that in this
variant of the count, the density as a whole is restored somewhat better, although the available
weight is distributed over a larger spatial area.

Variant 3. The vertical distribution of the anomaly density is unknown. We assume that
the desired function is given by the formula

η = η(x, z) = f(x)g(z),

where the function f is assumed to be known (it is assumed to be equal to one in the region where
the anomaly is located and zero outside it), and a function g, characterizing the distribution of
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the density of the anomaly along the vertical coordinate, is subject to recovery. The calculations
are carried out in accordance with the described algorithm with the value of the gradient of the
functional

I ′(f) = −8πG

−L∫
L

ν(x, z) dx.

The peculiarity of this variant is the following circumstance. As in the previous case, the required
function and the additionally specified function depend on a single variable. However, we know
the distribution of the potential along the length of the region, while we want to know the
density distribution to the depth of the earth’s layer. Calculations show that in comparison
with the first version of the account, a significant gain in determining the vertical position of the
anomaly is observed. At the same time, the accuracy of determining the vertical dimensions of
the anomaly and its weight is reduced. The results are generally worse than in option 2, which
means that the availability of information distributed along the horizontal coordinate provides
limited opportunities for restoring the vertical component of the desired function.

Variant 4. Unknown constant density anomaly and the depth of its occurrence. In this case
it is assumed that the anomaly density is characterized by the formula

η = η0f(x)g(z − h),

where the functions f and g describing the density distribution of the anomaly along the hor-
izontal and vertical anomalies are assumed to be known (they are assumed to be equal to one
in the anomaly region and zero outside it), and only the value of the density and depth of the
anomaly is unknown. In this case, the gradient of the functional is a vector with coordinates

Iη0 = −8πG

∫∫
V

ν(x, z) dxdz,

Ih = −8πG

∫∫
V

(ν(h+ 2l, z)− ν(h, z)) dxdz.

Calculations show that, in comparison with the basic version of the account, the error in de-
termining both the depth of occurrence of the anomaly and the value of its density is reduced,
which is explained by a significant reduction in the volume of recoverable information.

Variant 5. Unknown depth of the anomaly occurrence. The function η here has the same
form as in variant 4, but the unknown only assumes the depth of occurrence of the anomaly h.
The gradient of the functional here is a number

Ih = −8πG

∫∫
V

(ν(h+ 2l, z)− ν(h, z)) dxdz.

As calculations show, the depth of occurrence of the anomaly here is restored to a fairly high
degree of accuracy.

Variant 6. Unknown constant density anomaly. The function η here is defined in the same
way as in variant 4, but the unknown value assumes only the density of the anomaly η0. The
gradient of the functional in this case is a number

Iη0 = −8πG

∫∫
V

ν(x, z) dxdz.

Based on the calculations performed, it can be concluded that in the absence of any infor-
mation on the shape, size, location and structure of the gravitational anomaly of the available
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information on the distribution of the gravitational potential and its gradient over the earth’s
surface, it is not sufficient to obtain satisfactory information about the properties of the anomaly.
A more or less reliable estimate can be obtained only for its horizontal arrangement. However,
the presence of any a priori information about the anomaly makes it possible to increase the
accuracy of the calculations. Obtaining more accurate results in the general case requires the
use of additional experimental data. As such may be the results of measuring the gravitational
field in the wells or magnetic exploration data.
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